Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552620

RESUMO

Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.

2.
Biochem Biophys Res Commun ; 634: 62-69, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36240650

RESUMO

Static cold storage (SCS) is currently the most widely used method for organ preservation, but a number of limitations are associated including tissue damage and restricted opportunity for organ repair. Thus, the development of improved hypothermic storage solutions is an urgent need. Herein, using a renal epithelial cell model (LLC-PK1), we tested the benefits of ADD10, a novel clinical grade antioxidant product, in reducing damages associated with ischemia-reperfusion (IR). Cells were stored up to 24h at 4 °C in University of Wisconsin (UW) solution without or in the presence of 1% ADD10 with following reperfusion up to 24h at 37 °C. The presence of ADD10 significantly decreased cells damages, cell death, and the level of reactive oxygen species (ROS) (P < 0.05). Concomitantly, ADD10 supplementation also favored an increased oxygen consumption rate (OCR) and improved bioenergetics of LLC-PK1 cells (P < 0.05). Finally, preliminary in vivo studies suggested a benefit of ADD10 on the renal function post-transplantation. In conclusion, these results demonstrate that the addition of ADD10 to the preservation solution not only efficiently protects renal cells during SCS, but also improves the functionality of cold-stored organs during transplantation.


Assuntos
Lesão por Frio , Transplante de Rim , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Suínos , Animais , Humanos , Soluções para Preservação de Órgãos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Rim/fisiologia , Células LLC-PK1 , Metabolismo Energético , Insulina , Glutationa , Alopurinol , Temperatura Baixa
3.
Adv Exp Med Biol ; 1301: 7-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370285

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with a dismal 5-year survival rate of 5% and very limited efficacy of the current therapeutic regimens. The lethality of PDAC stems from asymptomatic early stage of the disease, its propensity to rapidly disseminate, as well as unusual, dense and highly active surrounding stroma. Fortunately, promising literature data suggests that exploiting newly contextualized type of cell death, termed "ferroptosis", has great potential for overcoming the major problems regarding PDAC treatment. A major player in this type of cell death is Glutamate/Cystine antiporter - xCT, which is responsible for the uptake of oxidized form of cysteine, and thus maintenance of intracellular amino acid and redox homeostasis. xCT seems to fulfill all requirements of the solid and specific molecular target for ferroptosis-based anti-cancer therapy. In this chapter we summarized mounting literature data supporting this hypothesis, but also, we pointed out some of the underexamined aspects of xCT-dependent (patho)physiology of the cancer cell, which have to be addressed in future studies. The abstract could be used as "informative abstract" for the online version.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Morte Celular , Cistina/metabolismo , Humanos , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico
4.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203923

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of ß-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.


Assuntos
Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Medicina Nuclear , Neoplasias Pancreáticas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/terapia , Diagnóstico por Imagem , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Compostos Radiofarmacêuticos/química , Neoplasias Pancreáticas
5.
Cell Death Dis ; 11(9): 789, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968052

RESUMO

Contextualisation of the new type of cell death called "ferroptosis" opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which "ferroptosis inducers" can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.


Assuntos
Comunicação Celular/fisiologia , Morte Celular/fisiologia , Ferroptose , Ferro , Neoplasias/patologia , Morte Celular/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Humanos , Ferro/metabolismo , Ferro/farmacologia , Neoplasias/metabolismo
6.
Cancer Genomics Proteomics ; 17(5): 469-497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859627

RESUMO

BACKGROUND/AIM: Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS: In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS: The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION: These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.


Assuntos
Glucose-6-Fosfato Isomerase/metabolismo , L-Lactato Desidrogenase/metabolismo , Neoplasias/patologia , Efeito Warburg em Oncologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/genética , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos
7.
Int J Mol Sci ; 21(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517181

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all pancreatic tumors, is a highly devastating disease with poor prognosis and rising incidence. The lack of available specific diagnostics tests and the limited treatment opportunities contribute to this pejorative issue. Over the last 10 years, a growing interest pointing towards mesothelin (MSLN) as a promising PDAC-associated antigen has emerged. The limited expression of MSLN in normal tissues (peritoneum, pleura and pericardium) and its overexpression in 80 to 90% of PDAC make it an attractive candidate for therapeutic management of PDAC patients. Moreover, its role in malignant progression related to its involvement in tumor cell proliferation and resistance to chemotherapy has highlighted the relevance of its targeting. Hence, several clinical trials are investigating anti-MSLN efficacy in PDAC. In this review, we provide a general overview of the different roles sustained by MSLN during PDAC progression. Finally, we also summarize the different MSLN-targeted therapies that are currently tested in the clinic.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/terapia , Proteínas Ligadas por GPI/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Apoptose , Biomarcadores Tumorais , Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/diagnóstico , Proliferação de Células , Terapia Combinada , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Mesotelina , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/diagnóstico , Prognóstico , Neoplasias Pancreáticas
8.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365833

RESUMO

A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.

9.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881671

RESUMO

Immune cells survey and patrol throughout the body and sometimes take residence in niche environments with distinct cellular subtypes and nutrients that may fluctuate from those in which they matured. Rooted in immune cell physiology are metabolic pathways and metabolites that not only deliver substrates and energy for growth and survival, but also instruct effector functions and cell differentiation. Unlike cancer cells, immune cells are not subject to a "Darwinian evolutionary pressure" that would allow them to adapt to developing tumors but are often irrevocably affected to local nutrient deprivation. Thus, immune cells must metabolically adapt to these changing conditions in order to perform their necessary functions. On the other hand, there is now a growing appreciation that metabolic changes occurring in cancer cells can impact on immune cell functionality and contribute to tumor immune evasion, and as such, there is a considerable and growing interest in developing techniques that target metabolism for immunotherapy. In this review, we discuss the metabolic plasticity displayed by innate and adaptive immune cells and highlight how tumor-derived lactate and tumor acidity restrict immunity. To our knowledge, this review outlines the most recent insights on how tumor microenvironment metabolically instructs immune responsiveness.


Assuntos
Imunidade , Neoplasias/patologia , Microambiente Tumoral , Aminoácidos/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Neoplasias/metabolismo
10.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658755

RESUMO

Mesothelin is a membrane-associated protein overexpressed in pancreatic ductal adenocarcinoma (PDAC). Some mesothelin-targeted therapies are in clinical development but the identification of patients eligible for such therapies is still challenging. The objective of this study was to perform the imaging of mesothelin in mice models of PDAC with a technetium-labeled anti-mesothelin single-domain antibody (99mTc-A1). METHODS: The Cancer Genomic Atlas (TCGA) database was used to determine the prognostic role of mesothelin in PDAC. 99mTc-A1 was evaluated both in vitro in PDAC cells (SW1990 and AsPC-1) and in vivo in an experimental model of mesothelin-expressing PDAC (AsPC-1) in mice. RESULTS: TCGA analysis showed that PDAC patients with high mesothelin expression had a shorter overall survival (P = 0.00066). The binding of 99mTc-A1 was 2.1-fold greater in high-mesothelin-expressing AsPC-1 cells when compared to moderate-mesothelin-expressing SW1990 cells (p < 0.05). In vivo, the 99mTc-A1 uptake was 3.5-fold higher in AsPC-1-derived tumors as compared to a technetium-labeled irrelevant antibody (99mTc-Ctl) (p < 0.01). CONCLUSIONS: 99mTc-A1 accurately allows imaging of mesothelin-expressing experimental PDAC tumors. Our experiments paved the way for the development of a companion test for mesothelin-targeted therapies.

11.
Liver Transpl ; 25(4): 627-639, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663275

RESUMO

Liver ischemia/reperfusion injury (IRI) is an important cause of liver damage especially early after liver transplantation, following liver resection, and in other clinical situations. Using rat experimental models, we identified oxaloacetate (OAA) as a key metabolite able to protect hepatocytes from hypoxia and IRI. In vitro screening of metabolic intermediates beneficial for hepatocyte survival under hypoxia was performed by measures of cell death and injury. In vivo, the effect of OAA was evaluated using the left portal vein ligation (LPVL) model of liver ischemia and a model of warm IRI. Liver injury was evaluated in vivo by serum transaminase levels, liver histology, and liver weight (edema). Levels and activity of caspase 3 were also measured. In vitro, the addition of OAA to hepatocytes kept in a hypoxic environment significantly improved cell viability (P < 0.01), decreased cell injury (P < 0.01), and improved energy metabolism (P < 0.01). Administration of OAA significantly reduced the extent of liver injury in the LPVL model with lower levels of alanine aminotransferase (ALT; P < 0.01), aspartate aminotransferase (AST; P < 0.01), and reduced liver necrosis (P < 0.05). When tested in a warm IRI model, OAA significantly decreased ALT (P < 0.001) and AST levels (P < 0.001), prevented liver edema (P < 0.001), significantly decreased caspase 3 expression (P < 0.01), as well as histological signs of cellular vesiculation and vacuolation (P < 0.05). This was associated with higher adenosine triphosphate (P < 0.05) and energy charge levels (P < 0.01). In conclusion, OAA can significantly improve survival of ischemic hepatocytes. The hepatoprotective effect of OAA was associated with increased levels of liver bioenergetics both in vitro and in vivo. These results suggest that it is possible to support mitochondrial activity despite the presence of ischemia and that OAA can effectively reduce ischemia-induced injury in the liver.


Assuntos
Transplante de Fígado/efeitos adversos , Ácido Oxaloacético/administração & dosagem , Substâncias Protetoras/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Isquemia Quente/efeitos adversos , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Cultura Primária de Células , Ratos , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/etiologia
12.
Front Immunol ; 9: 2001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254631

RESUMO

We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse, we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration in vivo. We next aimed at understanding, at the molecular level, how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation. Here, we show that chemokine stimulation phosphorylates Fam65b in T lymphocytes. This post-translational modification decreases the affinity of Fam65b for RhoA and favors Fam65b shuttling from the plasma membrane to the cytosol. Functionally, we show that the degree of Fam65b phosphorylation controls some cytoskeletal alterations downstream active RhoA such as actin polymerization, as well as T cell migration in vitro. Altogether, our results show that Fam65b expression and phosphorylation can finely tune the amount of active RhoA in order to favor optimal T lymphocyte motility.


Assuntos
Proteínas de Transporte/imunologia , Movimento Celular/imunologia , Proteínas de Membrana/imunologia , Proteínas/imunologia , Linfócitos T/imunologia , Proteínas rho de Ligação ao GTP/imunologia , Proteína rhoA de Ligação ao GTP/imunologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/imunologia , Animais , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação da Expressão Gênica/imunologia , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteínas/genética , Linfócitos T/citologia , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
13.
PLoS One ; 13(6): e0199177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902244

RESUMO

The liver is a highly vascularized organ receiving a dual input of oxygenated blood from the hepatic artery and portal vein. The impact of decreased blood flow on glucose metabolism and how hepatocytes could adapt to this restrictive environment are still unclear. Using the left portal vein ligation (LPVL) rat model, we found that cellular injury was delayed after the onset of liver ischemia. We hypothesized that a metabolic adaptation by hepatocytes to maintain energy homeostasis could account for this lag phase. Liver glucose metabolism was characterized by 13C- and 1H-NMR spectroscopy and analysis of high-energy metabolites. ALT levels and caspase 3 activity in LPVL animals remained normal during the first 12 h following surgery (P<0.05). Ischemia rapidly led to decreased intrahepatic tissue oxygen tension and blood flow (P<0.05) and increased expression of Hypoxia-inducible factor 1-alpha. Intrahepatic glucose uptake, ATP/ADP ratio and energy charge level remained stable for up to 12 h after ligation. Entry of glucose in the Krebs cycle was impaired with lowered incorporation of 13C from [U-13C]glucose into glutamate and succinate from 0.25 to 12 h after LPVL. However, total hepatic succinate and glutamate increased 6 and 12 h after ischemia (P<0.05). Glycolysis was initially reduced (P<0.05) but reached maximum 13C-lactate (P<0.001) and 13C-alanine (P<0.01) enrichments 12 h after LPVL. In conclusion, early liver homeostasis stems from an inherent ability of ischemic hepatocytes to metabolically adapt through increased Krebs cycle and glycolysis activity to preserve bioenergetics and cell viability. This metabolic plasticity of hepatocytes could be harnessed to develop novel metabolic strategies to prevent ischemic liver damage.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Isquemia/metabolismo , Fígado/irrigação sanguínea , Regulação para Cima , Anaerobiose , Animais , Morte Celular , Hipóxia Celular , Metabolismo Energético , Hepatócitos/patologia , Homeostase , Fígado/patologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Oncotarget ; 9(42): 26868-26883, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928490

RESUMO

HCC (Hepatocellular carcinoma) cells exhibit greater metabolic plasticity than normal hepatocytes since they must survive in a dynamic microenvironment where nutrients and oxygen are often scarce. Using a metabolomic approach combined with functional in vitro and in vivo assays, we aimed to identify an HCC metabolic signature associated with increased tumorigenicity and patient mortality. Metabolite profiling of HCC Dt81Hepa1-6 cells revealed that their increased tumorigenicity was associated with elevated levels of glycolytic metabolites. Tumorigenic Dt81Hepa1-6 also had an increased ability to uptake glucose leading to a higher glycolytic flux that stemmed from an increased expression of glucose transporter GLUT-1. Dt81Hepa1-6-derived tumors displayed increased mRNA expressions of glycolytic genes, Hypoxia-inducible factor-1alpha and of Cyclin D1. HCC tumors also displayed increased energy charge, reduced antioxidative metabolites and similar fatty acid biosynthesis compared to healthy liver. Increased tumoral expression of glycolytic and hypoxia signaling pathway mRNAs was associated with decreased survival in HCC patients. In conclusion, HCC cells can rapidly alter their metabolism according to their environment and switch to the use of glucose through aerobic glycolysis to sustain their tumorigenicity and proliferative ability. Therefore, cancer metabolic reprogramming could be essential for the tumorigenicity of HCC cells during cancer initiation and invasion.

15.
Cell Cycle ; 17(7): 903-916, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29633904

RESUMO

Hepatocellular carcinoma (HCC) is a metabolically heterogeneous cancer and the use of glucose by HCC cells could impact their tumorigenicity. Dt81Hepa1-6 cells display enhanced tumorigenicity compared to parental Hepa1-6 cells. This increased tumorigenicity could be explained by a metabolic adaptation to more restrictive microenvironments. When cultured at high glucose concentrations, Dt81Hepa1-6 displayed an increased ability to uptake glucose (P<0.001), increased expression of 9 glycolytic genes, greater GTP and ATP (P<0.001), increased expression of 7 fatty acid synthesis-related genes (P<0.01) and higher levels of Acetyl-CoA, Citrate and Malonyl-CoA (P<0.05). Under glucose-restricted conditions, Dt81Hepa1-6 used their stored fatty acids with increased expression of fatty acid oxidation-related genes (P<0.01), decreased triglyceride content (P<0.05) and higher levels of GTP and ATP (P<0.01) leading to improved proliferation (P<0.05). Inhibition of lactate dehydrogenase and aerobic glycolysis with sodium oxamate led to decreased expression of glycolytic genes, reduced lactate, GTP and ATP levels (P<0.01), increased cell doubling time (P<0.001) and reduced fatty acid synthesis. When combined with cisplatin, this inhibition led to lower cell viability and proliferation (P<0.05). This metabolic-induced tumorigenicity was also reflected in human Huh7 cells by a higher glucose uptake and proliferative capacity compared to HepG2 cells (P<0.05). In HCC patients, increased tumoral expression of Glut-1, Hexokinase II and Lactate dehydrogenase correlated with poor survival (P = 2.47E-5, P = 0.016 and P = 6.58E-5). In conclusion, HCC tumorigenicity can stem from a metabolic plasticity allowing them to thrive in a broader range of glucose concentrations. In HCC, combining glycolytic inhibitors with conventional chemotherapy could lead to improved treatment efficacy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/metabolismo , Acetilcoenzima A/metabolismo , Adaptação Fisiológica , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Ácidos Graxos/biossíntese , Glucose/farmacologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Células Hep G2 , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Malonil Coenzima A/metabolismo , Camundongos , Transdução de Sinais , Análise de Sobrevida , Triglicerídeos/metabolismo
16.
PLoS One ; 12(12): e0190366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29284039

RESUMO

The liver plays a key role in maintaining physiological homeostasis and hepatocytes are largely responsible for this. The use of isolated primary hepatocytes has become an essential tool for the study of nutrient physiology, xenobiotic metabolism and several liver pathologies. Since hepatocytes are removed from their normal environment, the isolation procedure and in vitro culture of primary hepatocytes is partially known to induce undesired metabolic changes. We aimed to perform a thorough metabolic profiling of primary cells before, during and after isolation using state-of-the-art techniques. Extensive metabolite measurements using HPLC were performed in situ in the liver, during hepatocyte isolation using the two-step collagenase perfusion method and during in vitro cell culture for up to 48 hours. Assessment of mitochondrial respiratory capacity and ATP-linked respiration of isolated primary hepatocytes was performed using extracellular flux analysis. Primary hepatocytes displayed a drastic decrease in antioxidative-related metabolites (NADPH, NADP, GSH and GSSG) during the isolation procedure when compared to the in situ liver (P<0.001). Parallel assessment of citric acid cycle activity showed a significant decrease of up to 95% in Acetyl-CoA, Isocitrate/Citrate ratio, Succinate, Fumarate and Malate in comparison to the in situ liver (P<0.001). While the levels of several cellular energetic metabolites such as Adenosine, AMP, ADP and ATP were found to be progressively reduced during the isolation procedure and cell culture (P<0.001), higher ATP/ADP ratio and energy charge level were observed when primary cells were cultured in vitro compared to the in situ liver (P<0.05). In addition, a significant decrease in the respiratory capacity occurred after 24 hours in culture. Interestingly, this was not associated with a significant modification of ATP-linked respiration. In conclusion, major metabolic alterations occur immediately after hepatocytes are removed from the liver. These changes persist or increase during in vitro culture. These observations need to be taken into account when using primary hepatocytes for the study of metabolism or liver physiopathology.


Assuntos
Hepatócitos/metabolismo , Animais , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclo do Ácido Cítrico , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo
17.
PLoS One ; 12(2): e0171215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152020

RESUMO

There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and ß-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and ß-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Animais , Agregação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citometria de Fluxo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Transplante de Neoplasias , Ensaio Tumoral de Célula-Tronco
18.
Front Pediatr ; 5: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184367

RESUMO

Autoimmune hepatitis (AIH) is a multifactorial autoimmune disease of unknown pathogenesis, characterized by a loss of immunological tolerance against liver autoantigens resulting in the progressive destruction of the hepatic parenchyma. Current treatments are based on non-specific immunosuppressive drugs. Although tremendous progress has been made using specific biological agents in other inflammatory diseases, progress has been slow to come for AIH patients. While current treatments are successful in the majority of patients, treatment discontinuation is difficult to achieve, and relapses are frequent. Lifelong immunosuppression is not without risks, especially in the pediatric population; 4% of patient with type 1 AIH will eventually develop hepatocellular carcinoma with a 2.9% probability after 10 years of treatment. Therefore, future treatments should aim to restore tolerance to hepatic autoantigens and induce long-term remission. Promising new immunotherapies have been tested in experimental models of AIH including T and B cell depletion and regulatory CD4+ T cells infusion. Clinical studies on limited numbers of patients have also shown encouraging results using B-cell-depleting (rituximab) and anti-TNF-α (infliximab) antibodies. A better understanding of key molecular targets in AIH combined with effective site-specific immunotherapies could lead to long-term remission without blanket immunosuppression and with minimal deleterious side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...